Durrett's Exercises

Thanh Le

May 2024

This file covers the following problems of Durrett's *Probability: Theory of Examples*, 5th edition: 1.2.4, 1.3.1, 1.5.9, 1.6.3, 2.2.1, 2.3.14, 2.4.2, 3.2.4, 3.3.1, 3.4.4, 4.1.2, 4.2.1, 4.3.3

1.2.4.

Suppose that $F(x) = P(X \le x)$ is continuous. We will show that Y = F(X) has a uniform distribution on (0, 1), that is, if $y \in [0, 1]$, $P(Y \le y) = y$.

Let $y \in [0, 1]$ be arbitrary. If y = 1, then $P(F \circ X \le 1) = 1$, since F is always ≤ 1 . Consider $y \in [0, 1)$. Let $x = \sup\{r \in \mathbb{R} : F(r) \le y\}$ (as f is continuous, f(x) = y). Now, we have

$$P(Y \le y) = P(F \circ X \le y) = P(\{w \in \Omega : F \circ X(w) \le y\})$$
$$= P(\{w \in \Omega : X(w) \le x\}) = F(x) = y,$$

where the third equality uses the fact that f is increasing.

Thus, Y has a uniform distribution on (0, 1).

1.3.1

Suppose that \mathcal{A} generates \mathcal{S} . Then, we will show that $X^{-1}(\mathcal{A}) = \{\{X \in A\} : A \in \mathcal{A}\}\$ generates $\sigma(X) = \{\{X \in B\} : B \in \mathcal{S}\}\$. (Here, as usual, X denotes a measure from (Ω, \mathcal{F}) to (S, \mathcal{S})). Here, in other words, we need to show that $\sigma(X^{-1}(\mathcal{A})) = \sigma(X)$. We will do that by mutual containment.

 $\boxed{\subseteq} We have that X^{-1}(\mathcal{A}) \subseteq X^{-1}(\mathcal{S}) \text{ (Since } \mathcal{A} \subseteq \mathcal{S}). Therefore, \sigma(X^{-1}(\mathcal{A})) \subseteq \sigma(X^{-1}(\mathcal{S})). Now, note that <math>\sigma(X^{-1}(\mathcal{S})) = \sigma(X)$ (by the definition of $\sigma(X)$). Hence, $\sigma(X^{-1}(\mathcal{A})) \subseteq \sigma(X)$.

 \supseteq Our idea is to show that X is $\sigma(X^{-1}(\mathcal{A}))$ -measurable. (This implies $\sigma(X) \subseteq \sigma(X^{-1}(\mathcal{A}))$).

We will use the following **Lemma**: for any σ -field \mathcal{D} on Ω , $\mathcal{T} = \{B \in \mathcal{S} : \{X \in B\} \in \mathcal{D}\}$ is a σ -field in \mathcal{S} . (We will prove this at the end of this proof).

Now, construct \mathcal{T} with $\mathcal{D} := \sigma(X^{-1}(\mathcal{A}))$, then \mathcal{T} is a σ -field containing \mathcal{A} . Since \mathcal{A} generates $\mathcal{S}, \mathcal{S} \subseteq \mathcal{T}$. Therefore, $\sigma(X) \subseteq \sigma$. But, by definition of $\mathcal{T}, \mathcal{T} \subseteq \mathcal{S}$. Hence, $\mathcal{T} = \mathcal{S}$. This means $\{B \in \mathcal{S} : \{X \in B\} \subseteq \mathcal{D}\} = \mathcal{S}$. Hence, X is \mathcal{D} -measurable, i.e., $\sigma(X^{-1}(\mathcal{A}))$ -measurable.

So, we have shown that
$$\sigma(X^{-1}(\mathcal{A})) = \sigma(X)$$
.

Proof of Lemma. We will prove the Lemma stated above.

Let \mathcal{D} be arbitrary, and \mathcal{T} is defined as stated. We want to show that \mathcal{T} is a σ -field in \mathcal{S} .

By definition of $\mathcal{T}, \mathcal{T} \subseteq \mathcal{S}$. Now, to show that \mathcal{T} is a σ -field, we will show that \mathcal{T} is closed under countable union and complement.

Let $\{B_i\} \in \mathcal{T}$. We have that $\{X \in B_i\} \in \mathcal{D}$. Now, let $B = \bigcup B_i$, we have

$$\{X \in B\} = \{X \in \cup B_i\} = \cup\{X \in B_i\} \in \mathcal{D},\$$

since \mathcal{D} is a σ -field (hence closed under countable union). Hence, $B \in \mathcal{T}$. Now, let $B \in \mathcal{T}$ be arbitrary. We have $\{X \in B\} \in \mathcal{D}$. This means

$$\{X \in B^c\} = \Omega \setminus \{X \in B\} = \{X \in B\}^c \in \mathcal{D},\$$

since \mathcal{D} is closed under complement. Thus, $B^c \in \mathcal{T}$.

We have shown that \mathcal{T} is closed under countable union and complement, which means \mathcal{T} is a σ -field.

1.5.9

Suppose that f has $||f||_p = (\int |f|^p d\mu)^{1/p} < \infty$. We will show that there are simple function φ_n such that $||f_n - f||_p \to 0$.

From Theorem 2.10 (or around that) in Folland, we know that there exists a sequence φ_n of simple functions such that $|\varphi_n| \leq |f|$ and $\varphi_n \to f$ pointwisely. Note that

$$|\varphi_n - f|^p \le (|\varphi_n| + |f|)^p \le (|f| + |f|)^p = 2^p |f|^p.$$

Note that $|f|^p$ is integrable, so $2^p |f|^p$ is also integrable. Also, note that $|\varphi_n - f|^p$ converges pointwisely to 0. Now, by Dominated Convergence Theorem, we yield $\int |\varphi_n - f|^p d\mu \to \int 0 d\mu = 0$. Therefore, $||\varphi_n - f||_p \to 0$, as desired.

1.6.3

Recall that we know (a special case of) Chebyshev's inequality: for a random variable X and any $a \ge 0$, $P(|X| \ge a) \le \frac{EX^2}{a^2}$. (i) Let $0 < b \le a$. We will show that there exists a random variable X

(i) Let $0 < b \leq a$. We will show that there exists a random variable X with $EX^2 = b^2$ and $P(|X| \geq a) = b^2/a^2$. (This means that the equality in Chebyshev's inequality can be achieved, i.e. the inequality is sharp).

Our goal is just to construct X such that $P(|X| \ge a) = b^2/a^2$ and $EX^2 = b^2$. It's natural to come up with $X : [0,1] \to \mathbb{R}$ (so the probability space is [0,1]) such that

$$X(w) = \begin{cases} a & \text{if } 1 \ge w \ge \frac{a^2 - b^2}{a^2} = 1 - \frac{b^2}{a^2} \\ 0 & \text{if } 0 \le w < 1 - \frac{b^2}{a^2}. \end{cases}$$

From this definition, we have that $P(|X| \ge a) = b^2/a^2$. Moreover,

$$EX^{2} = \int X^{2} \mathbf{1}_{\left[0,1-b^{2}/a^{2}\right)} dP + \int X^{2} \mathbf{1}_{\left[1-b^{2}/a^{2},1\right]} dP$$
$$= 0 + a^{2} P(\left[1-b^{2}/a^{2},1\right]) = a^{2} \frac{b^{2}}{a^{2}} = b^{2},$$

as desired.

(ii) Let X be a random variable such that $0 < EX^2 < \infty$. We will show that $\lim_{a\to\infty} \frac{a^2 P(|X|\geq a)}{EX^2} = 0$. (Chebyshev inequality only tells $\frac{a^2 P(|X|\geq a)}{b^2} \leq 1$, which is not as sharp as this limit).

We have

$$EX^{2} = \int X^{2} \mathbf{1}_{|X| \ge a} dP + \int X^{2} \mathbf{1}_{|X| < a} dP$$
$$\ge a^{2} P(|X| \ge a) + \int X^{2} \mathbf{1}_{|X| < a} dP.$$

This is equivalent to

$$a^{2}P(|X| \ge a) \le EX^{2} - \int X^{2} \mathbf{1}_{|X| < a} dP.$$
 (1)

Now, note that $X^{2}1_{|X| < n}$ $(n \in \mathbb{N})$ is a sequence of non-negative random variable, and that $X^{2}1_{|X| < n} \uparrow X^{2}$. Therefore, by Monotone Convergence Theorem, $\int X^{2}1_{|X| < n} dP \uparrow EX^{2}$. Now, take the limit of both sides of (1), we yield

$$\lim_{a \to \infty} a^2 P(|X| \ge a) \le EX^2 - EX^2 = 0.$$

Thus, LHS = 0 (as it must be ≥ 0). Now, dividing this equality by the constant EX^2 , we yield

$$\lim_{a \to \infty} \frac{a^2 P(|X| \ge a)}{EX^2} = 0.$$

as desired. (In the proof for this part, as $0 < EX^2 < \infty$, every step is well-defined).

2.2.1

Let X_1, X_2, \ldots be uncorrelated random variables with $\frac{\operatorname{var}(X_i)}{i} \to 0$ as $i \to \infty$. Let $S_n = X_1 + \cdots + X_n$ and $\nu_n = \frac{ES_n}{n}$ as $n \to \infty$. We will show that $\frac{S_n}{n} - \nu_n \to 0$ in L^2 and in probability.

Our idea is to use Theorem 2.2.6. Our triangular array will be $X_{n,i} := X_i$. Let $\mu_n := ES_n$ and $\sigma_n^2 := \operatorname{var}(S_n)$. The theorem say that if $\frac{\sigma_n^2}{b_n^2} \to 0$ (for some sequence b_n) then $\frac{S_n - \mu_n}{b_n}$ in L^2 and in probability (the theorem itself does not conclude about convergence L^2 , but its proof does). (Here, our b_n will be n).

We will show that $\frac{\sigma_n^2}{n^2} \to 0$. Let $\epsilon > 0$ be arbitrary. As X_i 's are uncorrelated, we have

$$\sigma_n^2 = \operatorname{var}(S_n) = \sum_{i=1}^n \operatorname{var}(X_i).$$

Thus,

$$\frac{\sigma_n^2}{n^2} = \sum_{i=1}^n \frac{\operatorname{var}(X_i)}{n^2} \le \frac{1}{n} \sum_{i=1}^n \frac{\operatorname{var}(X_i)}{i}.$$
 (1)

Now, as $\frac{\operatorname{var}(X_i)}{i} \to 0$, there exists an N such that for $n \ge N$, $\frac{\operatorname{var}(X_n)}{n} < \epsilon/2$. Let $M := \sum_{i=1}^{N} \frac{\operatorname{var}(X_i)}{i} < \infty$. Let $N' \in \mathbb{N}$ $(N' \ge N)$ such that $\frac{1}{N'} < \frac{\epsilon}{2M}$. Then, for any $n \ge N'$, continuing

on the inequality in (1), we yield

$$\frac{\sigma_n^2}{n^2} \le \frac{1}{n} \left(M + \sum_{i=N+1}^n \frac{\epsilon}{2} \right)$$
$$\le \frac{1}{N'} M + \frac{\epsilon}{2} < \epsilon.$$

Thus, $\frac{\sigma_n^2}{n^2} \to 0$. Now, by Theorem 2.2.6, $\frac{S_n - \mu_n}{n} \to 0$ in L^2 and in probability. In other words,

$$\frac{S_n - \mu_n}{n} = \frac{S_n - \nu_n n}{n} = \frac{S_n}{n} - \nu_n \to 0$$

in L^2 and in probability, as desired.

2.3.14

Let X_1, X_2, \ldots be independent. We will show $\sup X_n < \infty$ a.s. iff $\sum_n P(X_n > \infty)$ $A) < \infty$ for some A.

 \leftarrow Suppose that there exists $A \in \mathbb{R}$ such that $\sum_{n} P(X_n > A) < \infty$. Then, by Borel-Cantelli Lemma, $P(X_n > A \text{ i.o.}) = 0$. Now, suppose that $w \in \Omega$ satisfies $(\sup X_n)(w) = \infty$, then we have $w \in (X_n > A \text{ i.o.})$. Therefore, $\{\sup X_n = \infty\} \subseteq (X_n > A \text{ i.o.}).$ But, we know $P(X_n > A \text{ i.o.}) = 0$, so $P(\sup X_n = \infty) = 0$. Therefore, we yield $\sup X_n < \infty$ a.s..

 \Rightarrow Suppose that sup $X_n < \infty$ a.s.. Suppose, FSOC, that $\sum_n P(X_n > A) = \infty$ for any $A \in \mathbb{R}$. Fix an $A \in \mathbb{R}$. We know that X_i 's are independent, so $(X_i > A)$'s are also independent. Now, by the second Borel-Cantelli Lemma, we yield $P(X_n > A \text{ i.o.}) = 1.$

We have the following lemma: let (Ω, \mathcal{F}, P) be a probability space; let $C, D \in$ \mathcal{F} ; then if P(C) = P(D) = 1, then $P(C \cap D) = 1$. The proof of this lemma goes as follows. As P(C) = P(D) = 1, we yield $P(C \cap D) = 1$, $P(C \setminus D) = 0$, and $P(D \setminus C) = 0$. Therefore, $P(C \cap D) = P(C \cup D) - P(C \setminus D) - P(D \setminus C) =$ 1 - 0 - 0 = 1.

Now, from the lemma, we yield $P(\cap_{A \in \mathbb{R}}(X_n > A \text{ i.o.})) = 1$. This implies $P(\sup X_n = \infty) = 1$, i.e. $\sup X_n = \infty$ a.s., contradiction. Thus, there exists $A \in \mathbb{R}$ such that $\sum_n P(X_n > A) < \infty$.

2.4.2

Let $X_0 = (0, 1)$ and define $X_n \in \mathbb{R}^2$ inductively by declaring that X_{n+1} is chosen at random from the ball of radius $|X_n|$ centered at the origin. That is,

 $X_{n+1}/|X_n|$ is uniformly distributed on the ball of radius 1 and independent of X_1, \ldots, X_n . We will show that $n^{-1} \log |X_n| \to -1/2$ a.s. (Here, log means the natural log).

From the definition of X_n 's, we know that $\frac{|X_n|}{|X_{n-1}|}$'s are iid random variables (note that X_n is a random variable and the absolute value function is continuous imply that $|X_n|$ is also a random variable (Exercise 1.3.3)). Consider the function log on the domain [0, 1], with $\log(0) := \infty$. We have that log is continuous, so $\log \frac{|X_n|}{|X_{n-1}|}$'s are random variables. Furthermore, as $\frac{|X_n|}{|X_{n-1}|}$'s are iid, so are $\log \frac{|X_n|}{|X_{n-1}|}$'s.

We want to apply SSLN for $\log \frac{|X_n|}{|X_{n-1}|}$, so let's compute its expected value. Note that the distribution function of $\frac{|X_n|}{|X_{n-1}|}$ is

$$F(a) = P(\frac{|X_1|}{|X_0|} \le a) = P(|X_1| \le a) = \frac{\pi a^2}{\pi 1^2} = a^2,$$

where the third equal sign is because the point X_n is chosen uniformly. Thus, applying Theorem 1.6.9 for the function $|\log|$ (which is ≥ 0), we have

$$E\left|\log\frac{|X_1|}{|X_0|}\right| = \int_0^1 |\log(y)| 2y \, dy = -\int_0^1 \log(y) 2y \, dy = \frac{1}{2} < \infty,$$

by integration by parts. Therefore, we can apply Theorem 1.6.9 for $E\left(\log \frac{|X_1|}{|X_0|}\right)$. We yield

$$E\left(\log\frac{|X_1|}{|X_0|}\right) = \int_0^1 \log(y) 2y dy = -\frac{1}{2}$$

Now, by SLLN,

$$\frac{\sum_{i=1}^{n} \log \frac{|X_i|}{|X_{i-1}|}}{n} \to -\frac{1}{2} \text{ a.s.}$$

Note that the numerator on LHS is just $\log \frac{|X_n|}{|X_0|} = \log |X_n|$, so $\frac{\log |X_n|}{n} \rightarrow -1/2$ a.s..

3.2.4

Let $g \ge 0$ be continuous. Suppose that $X_n \Rightarrow X_\infty$. We will show

$$\liminf_{n \to \infty} Eg(X_n) \ge Eg(X_\infty)$$

As $X_n \Rightarrow X_\infty$, by Theorem 3.2.8, there exist Y_n $(1 \le n \le \infty)$ with the same distribution as X_n such that $Y_n \to Y_\infty$ a.s.. As g is continuous, by Exercise 1.3.3, $g(Y_n) \to g(Y_\infty)$ a.s.. Also, we know that $g \ge 0$, so $g(Y_n) \ge 0$ for all n. So, by Fatou's Lemma,

$$\liminf_{n \to \infty} Eg(Y_n) \ge E\left(\liminf_{n \to \infty} g(Y_n)\right) = Eg(Y_\infty).$$

But, as X_n and Y_n have same distrubtion, we know $Eg(X_n) = Eg(Y_n)$ (for any $1 \le n \le \infty$). Therefore,

$$\liminf_{n \to \infty} Eg(X_n) \ge Eg(X_\infty).$$

3.3.1

Suppose φ is a characteristic function (ch.f.). We will show that $\operatorname{Re}(\varphi)$ and $|\varphi|^2$ are also ch.f.'s.

We will prove for $|\varphi|^2$ first. Say ϕ is the ch.f. for a r.v. X, i.e. $\varphi(t) = Ee^{itX}$. Let X_1 be a r.v. that have the same distribution as X. Let X_2 be a r.v. that have the same distribution as -X and that is independent to X_1 . Then, the ch.f. of X_2 is

$$\varphi_2(t) = Ee^{it(-X)} = E\cos(it(-X)) + iE\sin(it(-X)) = E\cos(itX) - iE\sin(itX) = \overline{\varphi(t)}$$

Now, as X_1 and X_2 are independent, by Theorem 3.3.2, $X_1 + X_2$ has ch.f.

$$\varphi(t)\varphi_2(t) = \varphi(t)\overline{\varphi(t)} = |\varphi(t)|^2$$

Now, we will prove that $\operatorname{Re}(\varphi)$ is also a ch.f.. Consider X_1 and X_2 as above, i.e. X_1 has the same distribution as X; X_2 the same distribution as -X; X_1 and X_2 are independent. Let F_1, F_2 be the distribution functions of X_1, X_2 , respectively. Then, by Lemma 3.3.9, $\frac{1}{2}F_1 + \frac{1}{2}F_2$ is a distribution function, and has ch.f.

$$\frac{1}{2}\varphi(t) + \frac{1}{2}\varphi_2(t) = \operatorname{Re}(\varphi(t)).$$

(Explanation for why $F := \frac{1}{2}F_1 + \frac{1}{2}F_2$ is a distribution function: By Theorem 1.2.2, we just need to check 3 conditions: F is non-decreasing; $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$; F is right continuous. Then, the 3 conditions hold because F_1 and F_2 both satisfy all such conditions, by Theorem 1.2.1).

3.4.4

Let X_1, X_2, \ldots be i.i.d. with $X_i \ge 0$, $EX_i = 1$, and $var(X_i) = \sigma^2 \in (0, \infty)$. We will show that $2(\sqrt{S_n} - \sqrt{n}) \Rightarrow \sigma \chi$.

The idea is to manipulate $2(\sqrt{S_n} - \sqrt{n})$ so that we can use the Central Limit Theorem (CLT). Indeed, we have

$$2(\sqrt{S_n} - \sqrt{n}) = \frac{S_n - n}{\sigma n^{1/2}} \cdot \frac{2\sigma\sqrt{n}}{\sqrt{S_n} + \sqrt{n}}.$$
 (1)

Now, by CLT, we have that $\frac{S_n - n}{\sigma \sqrt{n}} \Rightarrow \chi$. Furthermore, by SLLN, we have that $\frac{S_n}{n} \to EX_1 = 1$ a.s.. This implies

$$\frac{2\sigma\sqrt{n}}{\sqrt{S_n} + \sqrt{n}} = \frac{2\sigma}{\sqrt{\frac{S_n}{n} + 1}} \to \frac{2\sigma}{1+1} = \sigma \text{ a.s.}.$$

Now, from (1), and by Exercise 3.2.14 (which says $Y_n \Rightarrow Y$ and $Z_n \Rightarrow c$ then $Y_n Z_n \Rightarrow cY$), we yield

$$2(\sqrt{S_n} - \sqrt{n}) \Rightarrow \sigma \chi.$$

4.1.2

Suppose that a > 0. We will show $P(|X| \ge a | \mathcal{F}) \le \frac{1}{a^2} E(X^2 | \mathcal{F})$. (Note that this is a version of Chebyshev's inequality, for conditional expectation!)

By definition, we have that $P(|X| \ge a | \mathcal{F}) = E(1_{(|X|\ge a)} | \mathcal{F})$. Note that $1_{(|X|\ge a)} \le \frac{X^2}{a^2}$ (because if $|X| < a, 1_{(|X|\ge a)} = 0$; otherwise, $1_{(|X|\ge a)} = 1 \le \frac{X^2}{a^2}$). Therefore, let $A \in \mathcal{F}$ be arbitrary, we have

$$\int_A \mathbf{1}_{(|X| \ge a)} dP \le \int_A \frac{1}{a^2} X^2 dP = \frac{1}{a^2} \int_A X^2 dP.$$

By definition of conditional expectation, the above is equivalent to

$$\int_{A} E(1_{(|X|\ge A)}|\mathcal{F})dP \le \frac{1}{a^2} \int_{A} E(X^2|\mathcal{F})dP, \qquad (1)$$

and this is true for any $A \in \mathcal{F}$.

Now, we will use the following *Lemma*: if X_1, X_2 are \mathcal{F} -measurable r.v.'s, and for any $A \in \mathcal{F}$, we have $\int_A X_1 dP \leq \int_A X_2 dP$, then $X_1 \leq X_2$ a.s. on Ω . (We will show the proof for this Lemma at the end of this problem).

Applying the lemma, we immediately yield that $E(1_{(|X|\geq A)}|\mathcal{F}) \leq E(X^2|\mathcal{F})$ a.s., as desired.

Proof of Lemma. Consider $\epsilon < 0$ be arbitrary. Let $Y := X_2 - X_1$, we know that $\int_A Y dP \ge 0$ for any $A \in \mathcal{F}$. Let $A_{\epsilon} = (Y \in (-\infty, \epsilon))$. As Y is \mathcal{F} -measurable, $A_{\epsilon} \in \mathcal{F}$. Thus, we have that $\int_{A_{\epsilon}} Y dP \ge 0$. This implies

$$0 \le \int_{A_{\epsilon}} Y dP \le \int_{A_{\epsilon}} \epsilon dP = \epsilon P(A_{\epsilon}).$$

As $\epsilon < 0$, we have that $P(A_{\epsilon}) \leq 0$. This means $P(A_{\epsilon}) = 0$. As this fact is true for any $\epsilon < 0$, we yield that $P(Y \in (-\infty, 0)) = 0$. Therefore, $Y \geq 0$ a.s.. \Box

4.2.1

Suppose that X_n is a martingale wrt \mathcal{G}_n . Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. We will show that $\mathcal{G}_n \supset \mathcal{F}_n$ and X_n is a martingale wrt \mathcal{F}_n .

As X_n is a martingale wrt \mathcal{G}_n , X_n is adapted to \mathcal{G}_n . That means X_1, \ldots, X_n are \mathcal{G}_n -measurable. But, \mathcal{F}_n is the smallest σ -algebra that makes X_1, \ldots, X_n measurable. Therefore, $\mathcal{F}_n \subset \mathcal{G}_n$.

By definition, we have that $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ (that is, \mathcal{F}_n is a filtration). Now, for any n, we have

$$E(X_{n+1}|\mathcal{F}_n) = E(E(X_{n+1}|\mathcal{G}_n)|\mathcal{F}_n) = E(X_n|\mathcal{F}_n) = X_n,$$

where the first equality is by Theorem 4.1.13, the second because X_n is a martingale wrt \mathcal{F}_n , and the third due to $X_n \in \mathcal{F}_n$. Therefore, X_n is a martingale wrt \mathcal{F}_n .

4.3.3

Let X_n, Y_n be positive, integrable, and adapted to \mathcal{F}_n . Suppose that $E(X_{n+1}|\mathcal{F}_n) \leq$ $X_n + Y_n$, with $\sum Y_n < \infty$ a.s.. We will show that X_n converges a.s. to a finite limit.

We have that

$$E(X_{n+1} - \sum_{k=1}^{n} Y_k | \mathcal{F}_n) = E(X_{n+1} | \mathcal{F}_n) - E(\sum_{k=1}^{n} Y_k | \mathcal{F}_n)$$
$$= E(X_{n+1} | \mathcal{F}_n) - \sum_{k=1}^{n} Y_k$$
$$\leq X_n - \sum_{k=1}^{n-1} Y_k,$$

where the second equality is because Y_n is adapted to \mathcal{F}_n , and the inequality is

where the second equality is because Y_n is adapted to \mathcal{F}_n , and the inequality is due to our hypothesis. Furthermore, note that as X_n and Y_n are adapted to \mathcal{F}_n , $X_n - \sum_{k=1}^{n-1} Y_k$ is adapted to \mathcal{F}_n . Therefore, $X_n - \sum_{k=1}^{n-1} Y_k$ is a supermartingale. Now, let $N = \inf_k \left(\sum_{m=1}^k Y_m > M \right)$ for some M > 0. N is a random vari-able, and we have that $\{N = n\} \in \mathcal{F}_n$ for any n, so N is a stopping time. Then, by Theorem 4.2.9, $Z_n := X_{n \wedge N} - \sum_{k=1}^{(n \wedge N)-1} Y_k$ is a supermartingale. Further-more, by the definition of N, we have $Z_n + M$ is a positive supermartingale. Therefore, by Theorem 4.2.12, $Z_n + M$ converges a.s. to a finite limit. This means then that Z_n converges a.s. to a finite limit.

Now, let $M \to \infty$. Then, $N \to \infty$. Therefore, $X_{n \wedge N} = X_n$, and $\sum_{k=1}^{(n \wedge N)^{-1}} Y_k = \sum_{k=1}^{n-1} Y_k$. Now, we have $n \to \infty$, Z_n converges a.s. to a finite limit, and $\sum_{k=1}^{\infty} Y_k$ is finite, so $X_n = Z_n + \sum_{k=1}^{n-1}$ converges a.s. to a finite limit. \Box