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This file covers the following problems of Durrett’s Probability: Theory of
Examples, 5th edition: 1.2.4, 1.3.1, 1.5.9, 1.6.3, 2.2.1, 2.3.14, 2.4.2, 3.2.4, 3.3.1,
3.4.4, 4.1.2, 4.2.1, 4.3.3

1.2.4.
Suppose that F (x) = P (X ≤ x) is continuous. We will show that Y = F (X)

has a uniform distribution on (0, 1), that is, if y ∈ [0, 1], P (Y ≤ y) = y.
Let y ∈ [0, 1] be arbitrary. If y = 1, then P (F ◦X ≤ 1) = 1, since F is always

≤ 1. Consider y ∈ [0, 1). Let x = sup{r ∈ R : F (r) ≤ y} (as f is continuous,
f(x) = y). Now, we have

P (Y ≤ y) = P (F ◦X ≤ y) = P ({w ∈ Ω : F ◦X(w) ≤ y})
= P ({w ∈ Ω : X(w) ≤ x}) = F (x) = y,

where the third equality uses the fact that f is increasing.
Thus, Y has a uniform distribution on (0, 1).

1.3.1
Suppose that A generates S. Then, we will show that X−1(A) = {{X ∈

A} : A ∈ A} generates σ(X) = {{X ∈ B} : B ∈ S}. (Here, as usual, X denotes
a measure from (Ω,F) to (S,S)). Here, in other words, we need to show that
σ(X−1(A)) = σ(X). We will do that by mutual containment.

⊆ We have that X−1(A) ⊆ X−1(S) (Since A ⊆ S). Therefore, σ(X−1(A)) ⊆
σ(X−1(S)). Now, note that σ(X−1(S)) = σ(X) (by the definition of σ(X)).
Hence, σ(X−1(A)) ⊆ σ(X).

⊇ Our idea is to show that X is σ(X−1(A))-measurable. (This implies σ(X) ⊆
σ(X−1(A))).

We will use the following Lemma: for any σ-field D on Ω, T = {B ∈ S :
{X ∈ B} ∈ D} is a σ-field in S. (We will prove this at the end of this proof).

Now, construct T with D := σ(X−1(A)), then T is a σ-field containing A.
Since A generates S, S ⊆ T . Therefore, σ(X) ⊆ σ. But, by definition of T ,
T ⊆ S. Hence, T = S. This means {B ∈ S : {X ∈ B} ⊆ D} = S. Hence, X is
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D-measurable, i.e., σ(X−1(A))-measurable.

So, we have shown that σ(X−1(A)) = σ(X).

Proof of Lemma. We will prove the Lemma stated above.
Let D be arbitrary, and T is defined as stated. We want to show that T is

a σ-field in S.
By definition of T , T ⊆ S. Now, to show that T is a σ-field, we will show

that T is closed under countable union and complement.
Let {Bi} ∈ T . We have that {X ∈ Bi} ∈ D. Now, let B = ∪Bi, we have

{X ∈ B} = {X ∈ ∪Bi} = ∪{X ∈ Bi} ∈ D,

since D is a σ-field (hence closed under countable union). Hence, B ∈ T .
Now, let B ∈ T be arbitrary. We have {X ∈ B} ∈ D. This means

{X ∈ Bc} = Ω \ {X ∈ B} = {X ∈ B}c ∈ D,

since D is closed under complement. Thus, Bc ∈ T .
We have shown that T is closed under countable union and complement,

which means T is a σ-field.

1.5.9
Suppose that f has ||f ||p = (

∫
|f |pdµ)1/p < ∞. We will show that there are

simple function φn such that ||fn − f ||p → 0.
From Theorem 2.10 (or around that) in Folland, we know that there exists

a sequence φn of simple functions such that |φn| ≤ |f | and φn → f pointwisely.
Note that

|φn − f |p ≤ (|φn|+ |f |)p ≤ (|f |+ |f |)p = 2p|f |p.

Note that |f |p is integrable, so 2p|f |p is also integrable. Also, note that |φn−f |p
converges pointwisely to 0. Now, by Dominated Convergence Theorem, we yield∫
|φn − f |pdµ →

∫
0dµ = 0. Therefore, ||φn − f ||p → 0, as desired.

1.6.3
Recall that we know (a special case of) Chebyshev’s inequality: for a random

variable X and any a ≥ 0, P (|X| ≥ a) ≤ EX2

a2 .
(i) Let 0 < b ≤ a. We will show that there exists a random variable X

with EX2 = b2 and P (|X| ≥ a) = b2/a2. (This means that the equality in
Chebyshev’s inequality can be achieved, i.e. the inequality is sharp).

Our goal is just to construct X such that P (|X| ≥ a) = b2/a2 and EX2 = b2.
It’s natural to come up with X : [0, 1] → R (so the probability space is [0, 1])
such that

X(w) =

{
a if 1 ≥ w ≥ a2−b2

a2 = 1− b2

a2

0 if 0 ≤ w < 1− b2

a2 .
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From this definition, we have that P (|X| ≥ a) = b2/a2. Moreover,

EX2 =

∫
X21[

0,1−b2/a2
)dP +

∫
X21[

1−b2/a2,1
]dP

= 0 + a2P ([1− b2/a2, 1]) = a2
b2

a2
= b2,

as desired.

(ii) Let X be a random variable such that 0 < EX2 < ∞. We will show

that lima→∞
a2P (|X|≥a)

EX2 = 0. (Chebyshev inequality only tells a2P (|X|≥a)
b2 ≤ 1,

which is not as sharp as this limit).
We have

EX2 =

∫
X21|X|≥adP +

∫
X21|X|<adP

≥ a2P (|X| ≥ a) +

∫
X21|X|<adP.

This is equivalent to

a2P (|X| ≥ a) ≤ EX2 −
∫

X21|X|<adP. (1)

Now, note that X21|X|<n (n ∈ N) is a sequence of non-negative random vari-
able, and that X21|X|<n ↑ X2. Therefore, by Monotone Convergence Theorem,∫
X21|X|<ndP ↑ EX2. Now, take the limit of both sides of (1), we yield

lim
a→∞

a2P (|X| ≥ a) ≤ EX2 − EX2 = 0.

Thus, LHS = 0 (as it must be ≥ 0). Now, dividing this equality by the constant
EX2, we yield

lim
a→∞

a2P (|X| ≥ a)

EX2
= 0,

as desired. (In the proof for this part, as 0 < EX2 < ∞, every step is well-
defined).

2.2.1
LetX1, X2, . . . be uncorrelated random variables with var(Xi)

i → 0 as i → ∞.

Let Sn = X1+· · ·+Xn and νn = ESn

n as n → ∞. We will show that Sn

n −νn → 0
in L2 and in probability.

Our idea is to use Theorem 2.2.6. Our triangular array will be Xn,i := Xi.

Let µn := ESn and σ2
n := var(Sn). The theorem say that if

σ2
n

b2n
→ 0 (for some

sequence bn) then
Sn−µn

bn
in L2 and in probability (the theorem itself does not

conclude about convergence L2, but its proof does). (Here, our bn will be n).

We will show that
σ2
n

n2 → 0. Let ϵ > 0 be arbitrary. As Xi’s are uncorrelated,
we have

σ2
n = var(Sn) =

n∑
i=1

var(Xi).
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Thus,

σ2
n

n2
=

n∑
i=1

var(Xi)

n2
≤ 1

n

n∑
i=1

var(Xi)

i
. (1)

Now, as var(Xi)
i → 0, there exists an N such that for n ≥ N , var(Xn)

n < ϵ/2. Let

M :=
∑N

i=1
var(Xi)

i < ∞.
Let N ′ ∈ N (N ′ ≥ N) such that 1

N ′ <
ϵ

2M . Then, for any n ≥ N ′, continuing
on the inequality in (1), we yield

σ2
n

n2
≤ 1

n

(
M +

n∑
i=N+1

ϵ

2

)
≤ 1

N ′M +
ϵ

2
< ϵ.

Thus,
σ2
n

n2 → 0. Now, by Theorem 2.2.6, Sn−µn

n → 0 in L2 and in probability.
In other words,

Sn − µn

n
=

Sn − νnn

n
=

Sn

n
− νn → 0

in L2 and in probability, as desired.

2.3.14
LetX1, X2, . . . be independent. We will show supXn < ∞ a.s. iff

∑
n P (Xn >

A) < ∞ for some A.
⇐ Suppose that there exists A ∈ R such that

∑
n P (Xn > A) < ∞. Then,

by Borel-Cantelli Lemma, P (Xn > A i.o.) = 0. Now, suppose that w ∈ Ω
satisfies (supXn)(w) = ∞, then we have w ∈ (Xn > A i.o.). Therefore,
{supXn = ∞} ⊆ (Xn > A i.o.). But, we know P (Xn > A i.o.) = 0, so
P (supXn = ∞) = 0. Therefore, we yield supXn < ∞ a.s..

⇒ Suppose that supXn < ∞ a.s.. Suppose, FSOC, that
∑

n P (Xn > A) = ∞
for any A ∈ R. Fix an A ∈ R. We know that Xi’s are indepedent, so (Xi > A)’s
are also independent. Now, by the second Borel-Cantelli Lemma, we yield
P (Xn > A i.o.) = 1.

We have the following lemma: let (Ω,F , P ) be a probability space; let C,D ∈
F ; then if P (C) = P (D) = 1, then P (C ∩ D) = 1. The proof of this lemma
goes as follows. As P (C) = P (D) = 1, we yield P (C ∩D) = 1, P (C \D) = 0,
and P (D \C) = 0. Therefore, P (C ∩D) = P (C ∪D)−P (C \D)−P (D \C) =
1− 0− 0 = 1.

Now, from the lemma, we yield P (∩A∈R(Xn > A i.o.)) = 1. This implies
P (supXn = ∞) = 1, i.e. supXn = ∞ a.s., contradiction.

Thus, there exists A ∈ R such that
∑

n P (Xn > A) < ∞.

2.4.2
Let X0 = (0, 1) and define Xn ∈ R2 inductively by declaring that Xn+1 is

chosen at random from the ball of radius |Xn| centered at the origin. That is,
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Xn+1/|Xn| is uniformly distributed on the ball of radius 1 and independent of
X1, . . . , Xn. We will show that n−1 log |Xn| → −1/2 a.s. (Here, log means the
natural log).

From the definition of Xn’s, we know that |Xn|
|Xn−1| ’s are iid random variables

(note that Xn is a random variable and the absolute value function is contin-
uous imply that |Xn| is also a random variable (Exercise 1.3.3)). Consider the
function log on the domain [0, 1], with log(0) := ∞. We have that log is contin-

uous, so log |Xn|
|Xn−1| ’s are random variables. Furthermore, as |Xn|

|Xn−1| ’s are iid, so

are log |Xn|
|Xn−1| ’s.

We want to apply SSLN for log |Xn|
|Xn−1| , so let’s compute its expected value.

Note that the distribution function of |Xn|
|Xn−1| is

F (a) = P (
|X1|
|X0|

≤ a) = P (|X1| ≤ a) =
πa2

π12
= a2,

where the third equal sign is because the point Xn is chosen uniformly. Thus,
applying Theorem 1.6.9 for the function | log | (which is ≥ 0), we have

E
∣∣ log |X1|

|X0|
∣∣ = ∫ 1

0

| log(y)|2y dy = −
∫ 1

0

log(y)2y dy =
1

2
< ∞,

by integration by parts. Therefore, we can apply Theorem 1.6.9 for E
(
log |X1|

|X0|
)
.

We yield

E
(
log

|X1|
|X0|

)
=

∫ 1

0

log(y)2ydy = −1

2
.

Now, by SLLN, ∑n
i=1 log

|Xi|
|Xi−1|

n
→ −1

2
a.s..

Note that the numerator on LHS is just log |Xn|
|X0| = log |Xn|, so log |Xn|

n →
−1/2 a.s..

3.2.4
Let g ≥ 0 be continuous. Suppoe that Xn ⇒ X∞. We will show

lim inf
n→∞

Eg(Xn) ≥ Eg(X∞).

As Xn ⇒ X∞, by Theorem 3.2.8, there exist Yn (1 ≤ n ≤ ∞) with the same
distribution as Xn such that Yn → Y∞ a.s.. As g is continuous, by Exercise
1.3.3, g(Yn) → g(Y∞) a.s.. Also, we know that g ≥ 0, so g(Yn) ≥ 0 for all n. So,
by Fatou’s Lemma,

lim inf
n→∞

Eg(Yn) ≥ E
(
lim inf
n→∞

g(Yn)
)
= Eg(Y∞).
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But, as Xn and Yn have same distrubtion, we know Eg(Xn) = Eg(Yn) (for any
1 ≤ n ≤ ∞). Therefore,

lim inf
n→∞

Eg(Xn) ≥ Eg(X∞).

3.3.1
Suppose φ is a characteristic function (ch.f.). We will show that Re(φ) and

|φ|2 are also ch.f.’s.
We will prove for |φ|2 first. Say ϕ is the ch.f. for a r.v. X, i.e. φ(t) = EeitX .

Let X1 be a r.v. that have the same distribution as X. Let X2 be a r.v. that
have the same distribution as −X and that is independent to X1. Then, the
ch.f. of X2 is

φ2(t) = Eeit(−X) = E cos(it(−X))+iE sin(it(−X)) = E cos(itX)−iE sin(itX) = φ(t).

Now, as X1 and X2 are independent, by Theorem 3.3.2, X1 +X2 has ch.f.

φ(t)φ2(t) = φ(t)φ(t) = |φ(t)|2.

Now, we will prove that Re(φ) is also a ch.f.. Consider X1 and X2 as above,
i.e. X1 has the same distribution as X; X2 the same distribution as −X; X1

and X2 are independent. Let F1, F2 be the distribution functions of X1, X2,
respectively. Then, by Lemma 3.3.9, 1

2F1 +
1
2F2 is a distribution function, and

has ch.f.
1

2
φ(t) +

1

2
φ2(t) = Re(φ(t)).

(Explanation for why F := 1
2F1 +

1
2F2 is a distribution function: By Theorem

1.2.2, we just need to check 3 conditions: F is non-decreasing; limx→∞ F (x) =
1, limx→−∞ F (x) = 0; F is right continuous. Then, the 3 conditions hold be-
cause F1 and F2 both satisfy all such conditions, by Theorem 1.2.1).

3.4.4
Let X1, X2, . . . be i.i.d. with Xi ≥ 0, EXi = 1, and var(Xi) = σ2 ∈ (0,∞).

We will show that 2(
√
Sn −

√
n) ⇒ σχ.

The idea is to manipulate 2(
√
Sn−

√
n) so that we can use the Central Limit

Theorem (CLT). Indeed, we have

2(
√
Sn −

√
n) =

Sn − n

σn1/2
· 2σ

√
n√

Sn +
√
n
. (1)

Now, by CLT, we have that Sn−n
σ
√
n

⇒ χ. Furthermore, by SLLN, we have that
Sn

n → EX1 = 1a.s.. This implies

2σ
√
n√

Sn +
√
n
=

2σ√
Sn

n + 1
→ 2σ

1 + 1
= σ a.s..
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Now, from (1), and by Exercise 3.2.14 (which says Yn ⇒ Y and Zn ⇒ c then
YnZn ⇒ cY ), we yield

2(
√
Sn −

√
n) ⇒ σχ.

4.1.2
Suppose that a > 0. We will show P (|X| ≥ a

∣∣F) ≤ 1
a2E(X2|F). (Note that

this is a version of Chebyshev’s inequality, for conditional expectation!)
By definition, we have that P (|X| ≥ a

∣∣F) = E(1(|X|≥a)|F). Note that

1(|X|≥a) ≤ X2

a2 (because if |X| < a, 1(|X|≥a) = 0; otherwise, 1(|X|≥a) = 1 ≤ X2

a2 ).
Therefore, let A ∈ F be arbitrary, we have∫

A

1(|X|≥a)dP ≤
∫
A

1

a2
X2dP =

1

a2

∫
A

X2dP.

By definition of conditional expectation, the above is equivalent to∫
A

E(1(|X|≥A)|F)dP ≤ 1

a2

∫
A

E(X2|F)dP, (1)

and this is true for any A ∈ F .
Now, we will use the following Lemma: if X1, X2 are F-measurable r.v.’s,

and for any A ∈ F , we have
∫
A
X1dP ≤

∫
A
X2dP , then X1 ≤ X2 a.s. on Ω. (We

will show the proof for this Lemma at the end of this problem).
Applying the lemma, we immediately yield that E(1(|X|≥A)|F) ≤ E(X2|F) a.s.,

as desired.

Proof of Lemma. Consider ϵ < 0 be arbitrary. Let Y := X2 − X1, we
know that

∫
A
Y dP ≥ 0 for any A ∈ F . Let Aϵ = (Y ∈ (−∞, ϵ)). As Y is

F-measurable, Aϵ ∈ F . Thus, we have that
∫
Aϵ

Y dP ≥ 0. This implies

0 ≤
∫
Aϵ

Y dP ≤
∫
Aϵ

ϵdP = ϵP (Aϵ).

As ϵ < 0, we have that P (Aϵ) ≤ 0. This means P (Aϵ) = 0. As this fact is true
for any ϵ < 0, we yield that P (Y ∈ (−∞, 0)) = 0. Therefore, Y ≥ 0 a.s..

4.2.1
Suppose that Xn is a martingale wrt Gn. Let Fn = σ(X1, . . . , Xn). We will

show that Gn ⊃ Fn and Xn is a martingale wrt Fn.
As Xn is a martingale wrt Gn, Xn is adapted to Gn. That means X1, . . . , Xn

are Gn-measurable. But, Fn is the smallest σ-algebra that makes X1, . . . , Xn

measurable. Therefore, Fn ⊂ Gn.
By definition, we have that F1 ⊂ · · · ⊂ Fn (that is, Fn is a filtration). Now,

for any n, we have

E(Xn+1|Fn) = E
(
E(Xn+1|Gn)

∣∣Fn

)
= E(Xn|Fn) = Xn,
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where the first equality is by Theorem 4.1.13, the second because Xn is a mar-
tingale wrt Fn, and the third due to Xn ∈ Fn. Therefore, Xn is a martingale
wrt Fn.

4.3.3
LetXn, Yn be positive, integrable, and adapted to Fn. Suppose that E(Xn+1|Fn) ≤

Xn + Yn, with
∑

Yn < ∞ a.s.. We will show that Xn converges a.s. to a finite
limit.

We have that

E(Xn+1 −
n∑

k=1

Yk|Fn) = E(Xn+1|Fn)− E(

n∑
k=1

Yk|Fn)

= E(Xn+1|Fn)−
n∑

k=1

Yk

≤ Xn −
n−1∑
k=1

Yk,

where the second equality is because Yn is adapted to Fn, and the inequality is
due to our hypothesis. Furthermore, note that as Xn and Yn are adapted to Fn,
Xn−

∑n−1
k=1 Yk is adapted to Fn. Therefore, Xn−

∑n−1
k=1 Yk is a supermartingale.

Now, let N = infk
(∑k

m=1 Ym > M
)
for some M > 0. N is a random vari-

able, and we have that {N = n} ∈ Fn for any n, so N is a stopping time. Then,

by Theorem 4.2.9, Zn := Xn∧N −
∑(n∧N)−1

k=1 Yk is a supermartingale. Further-
more, by the definition of N , we have Zn + M is a positive supermartingale.
Therefore, by Theorem 4.2.12, Zn + M converges a.s. to a finte limit. This
means then that Zn converges a.s. to a finite limit.

Now, letM → ∞. Then, N → ∞. Therefore,Xn∧N = Xn, and
∑(n∧N)−1

k=1 Yk =∑n−1
k=1 Yk. Now, we have n → ∞, Zn converges a.s. to a finite limit, and

∑∞
k=1 Yk

is finite, so Xn = Zn +
∑n−1

k=1 converges a.s. to a finite limit.
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