Probability Theory - Durrett’s

Thanh Le
May 2024

This material covers key theorems and concepts of Chapters 1.1-4.3 of Dur-
rett’s Probability: Theory and Examples, 5*" edition.

1 Measure theory backgrounds

A probability space is a triple (Q, F, P), where Q is a set of of ”outcomes”,
F is a set of "events”, and P : F — [0, 1] is a function that assigns probabilities
to events. We assume that F is a o-field (or o-algebra), i.e. a (nonempty)
collection of subsets of {2 that satisfy

e if A€ F then A°¢ € F, and
e if A; € F is a countable sequence of sets then U; A; € F.

We also require that P is a measure, i.e. a nonnegative countably additive set
function F — R.

Let p be a measure. Then p is said to be o-finite if there is a sequence of
sets A,, € A such that u(A,) < oo and U, A,, = Q.

A function f : Q — S is said to be a measurable map from (Q,F) to

(S,8) if
X 'B)={w:X(w)eB}eF foral BeS.

If (S,S) = (R%,R%) and d > 1 then X is called a random vector. If d =1, X
is called a random variable.

Note that if S is a o-field, then {{X € B} : B € S} is a o-field. It is the
smallest o-field on () that makes X a measurable map. It is called the o-field
generated by X and denoted by o(X). So,

o(X)={{XeB}:BeS}.

Borel sets: the smallest o-field containing the open sets.



When the distribution F(z) = P(X < z) has the form

Fo) = [ )
we say that X has density function f.

(Example 1.2.4 - Exponential distribution with rate \) Density func-
tion: f(x) = Ae™** for z > 0 and 0 otherwise. Distribution function:

0 <0
F<w):{1_e—)\x $;0

(Example 1.2.5. Standard normal distribution) Density function:
f(z) = (27) "2 exp (—22/2). There is no closed form expression for the dis-
tribution function F'(x), but for large x, we have useful bound for F(z) (check
Theorem 1.2.6.).

We say that X has a Poisson distribution with parameter X if

e~k

P(X =k) = —

for k=0,1,2,....
(Binomal distribution) https://en.wikipedia.org/wiki/Binomial_distribution

(Theorem 1.3.1) If {w : X(w) € A} € F for all A € A and A generates S,
then X is measurable.

(Theorem 1.3.4) If X : (,F) — (5,8) and f : (S,8) — (T,7T) are
measurable maps, then f(X) is a measurable map from (2, F) to (T, 7).

It follows from Thm 1.3.4 that if X is a r.v. then so is ¢X for all ¢ € R,
X2 sin(X), etc.

(Notation) a A b = min{a,b}; a Vb = max{a,b}; f+(z) = f(z) VO0; f~(x) =
(=f(z)) V0.

In Chapter 1.4, integral is defined for measurable functions only!
We say f is integrable if [ |f|du < co. The integral of f is defined by

[ n= [ rrau= [ an

(This is already step 4 of the 4 steps in defining integral).

(Notation) We define the integral of f over the set E:

/Efdu=/f~1Edu


https://en.wikipedia.org/wiki/Binomial_distribution

(Theorem 1.5.3 - Bounded Convergence Theorem) Let E be a set
with u(E) < oco. Suppose f, vanishes on E° |f,(z)] < M, and f, — f in

measure. Then
/fd,u: lim /fndu.
n—oo

(Theorem 1.5.5. Fatou’s Lemma): If f,, > 0 then

liminf/fndu Z/(liminffn)du‘
n—oo

n—oo
(Theorem 1.5.7 - Monotone Convergence Theorem) If f, > 0 and

fu® fs then [ fudu t [ fdp.

(Theorem 1.5.8 - Dominated Convergence Theorem) If f,, — f a.e.,
|fn] < g for all n, and g is integrable, then [ f,dp — [ fdpu.

(Counting measure) https://en.wikipedia.org/wiki/Counting_measure.
When 2 is a countable set, F = all subsets of €2, and p is counting measure,

then we write .., f(i) for [ fdpu.
(Theorem 1.5.1 - Jensen’s inequality) Suppose ¢ is convex, that is,

Ap(z) + (1= Ne(y) = e(Az + (1= N)y)

for all A € (0,1) and z,y € R. If p is a probability measure, and f and ¢(f) are

integrable, then
w(/fdu) < /<p(f)du-

Let [|f]lp = ([ |f|Pdp)'/? for 1 < p < oo.
(Theorem 1.5.2 - Holder’s inequality) If p, ¢ € (1,00) with 1/p+1/¢g =1
then

/ (Fald < 11l llglla-

(Theorem 1.6.4 - Chebyshev’s inequality) Suppose ¢ : R — R has
9 >0,let A€ R and let ig =inf{p(y) : y € A}. Then

iAP(X € A) < B(p(X); X € A) < Bp(X).

(Theorem 1.6.7 - Dominated Convergence Theorem) If X,, — X a.s.,
|Xn| <Y for all n, and EY < oo, then EX,, - EX.
(This is Theorem 1.5.8 rewritten for expectation).

(Theorem 1.6.9 - Change of variables formula) Let X be a random

element of (S, S) with distribution y, i.e, u(A4) = P(X € A). If f is a measurable
function from (S, S) to (R, R) so that f > 0 or E|f(X)| < oo, then

Ef(X) = /S F(w)uldy).


https://en.wikipedia.org/wiki/Counting_measure

(Theorem 1.7.2 - Fubini’s Theorem) If f > 0 or [ |f|du < oo then

/X/Yf(:v,y)/ﬁz(dy)ﬂl(dx):/Xxyfduz/Y/Xf(ffyy)ﬂl(dx)m(dy).

2 Law of Large Numbers

Two random variables X and Y are independent if for all C, D € R,
P(XeC,YeD)=PXeC)P(Y € D)

i.e., the events A = {X € C} and B = {Y € D} are independent.

We say that Y, converges to Y in probability if for all e > 0, P(|Y,, = Y| >
€) = 0 asn — oo.

Let
Qo = {w: lim X, exists}.
n—oo

If P(f20) = 1, we say that X,, converges almost surely.
https://en.wikipedia.org/wiki/Convergence_of_random_variables

(Convergence in LP) Let p > 0 be fixed. X,, converges to X in LP if
E|X, — X|P — 0 as n — oo.

A family of random variables X;,i € I with EX? < oo is said to be uncor-

related if we have
E(X;X;)=EX,EX;

whenever ¢ # j. (Note here that pairwise is enough. Also, note that being
independent implies being uncorrelated).

(Theorem 2.2.3 - L? weak law) Let X1, X»,... be uncorrelated random
variables with EX; = p and var(X;) < C < oo. If S;, = X; +--- 4+ X, then as
n — 00, S, /n — p in L? and in probability.

(Theorem 2.2.14 - Weak Law of Large Numbers) Let X;, X5,... be
iid. with E|X;| < co. Let S, = X1 +--- 4+ X,, and let 4 = EX;. Then
Sp/m — p in probability.

(Note: there is a more general version (see Theorem 2.2.12), but this one is
more commonly seen. It’s more easy to remember, t00).

(Lemma 2.2.13) If Y > 0 and p > 0 then E(Y?) = [~ py? "' P(Y > y)dy.
(Build-up for Chapter 2.3) If A,, is a sequence of subsets of 2, we let

limsup A, = lim U;2, A, = {w that are in infinitely many A,}
m— o0


https://en.wikipedia.org/wiki/Convergence_of_random_variables

(the limit exists since the sequence is decreasing in m).

It’s common to write limsup A, = {w : w € A,i.0.}, where i.o. stands
for infinitely often. An example which illustrates the use of this notation is
"X, — Oa.s. iff for all € > 0, P(]X,| > €i.0.) =0."

(Theorem 2.3.1 - Borel-Cantelli lemma) If Y | P(A,) < oo then

P(A,i0.)=0.

In other words, if the sum of the probabilities of the events {A,} is finite, then
the probability that infinitely many of them occur is 0.

(Theorem 2.3.2) X,, — X in probability iff for every subsequence X, )
there exists a further subsequence X, that converges almost surely to X.

(Theorem 2.3.7 - The second Borel-Cantelli lemma) If the events A,
are independent then > P(A,) = oo implies P(A,i.0.) = 1.

(Theorem 2.4.1 - Strong law of large numbers) Let X7, X5,... be
pairwise independent identically distributed random variables with E|X;| < co.
Let EX; =pand S, = X; +---+ X,,. Then S,,/n — p a.s. as n — oo.

Note that the strong law holds whenever FX; exists. We have Theo-
rem 2.4.5: Let Xi,X,... be iid. with EX;” = co and EX; < oco. If
Sp=X1+---4+ X, then S;,/n — coa.s..

3 Central Limit Theorems

A sequence of distribution functions is said to converge weakly to a limit F'
(written F,, = F) if F,,(y) — F(y) for all y that are continuity points of F. A
sequence of random variables X, is said to converge weakly or converge in
distribution to a limit X, (written X,, = X ) if their distribution functions
F,(z) = P(X, < x) converges weakly.

(Theorem 3.2.8) If F,, = F,, then there are random variables Y, 1 <
n < oo, with distribution Fj, so that Y,, — Y a.s..

(Theorem 3.2.9) X,, = X, iff for every bounded continuous function g,
we have Eg(X,,) = Eg(X).

(Theorem 3.3.2) If X; and X3 are independent and have ch.f.’s ¢; and ¢
then X5 + X has ch.f. ¢1(t)pa(t).

(Theorem 3.3.9) If Fy,..., F, have ch.f. ¢,...,¢, and A; > 0 have
)\1 + -4 )\n =1 then Z?:l )\le has ch.f. Z?:l Az@z



(Theorem 3.3.18) If [|z|"u(dx) < oo then its characteristic function ¢
has a continuous derivative of order n given by (™ (t) = [(iz)"e™* u(dx).

This implies if E|X|™ < oo, then its characteristic function is n times differ-
entiable at 0, and ¢(™ (0) = E(iX)".

(Theorem 3.4.1) Let X1, Xo,... be i.id. with EX; = p, var(X;) =02 €
(0,00). If S;, = X7 +---+ X, then
S, —np)/on'/? —
( o X

where x has the standard normal distribution.
(This is the central limit theorem for i.i.d sequences).

(Theorem 3.4.10 - The Lindeberg-Feller theorem) For each n, let
Xn,m,1 <m < n, be independent random variables with £X,, ,,, = 0. Suppose
i >r_; EXTQL)m —=02>0

(ii) For all € > 0, limy, o0 Doy E(| Xnm|?; | Xnm| > €) = 0.

Then, S, = Xp1+ -+ Xpn = 0x as n — o0.

This is the CLT for triangular arrays, which generalizes the version for i.i.d..
In words, the theorem says that a sum of a large number of small independent
effects has approximately a normal distribution.

4 Martingales

Given a probability space (2, Fo, P), a o-field F C F;, and a random variable
X € Fy with E|X| < co. We define the conditional expectation of X given
F, E(X|F), to be any random variable Y that has

(i) Y € F, i.e, Y is F-measurable.
(ii) forall Ae F, [, XdP = [,YdP.

Actually, Y exists and is unique.
(Theorem 4.1.12) If ¥ C G and E(X|G) € F then E(X|F) = E(X|G).

(Theorem 4.1.14) If X € F and E|Y|, E|XY| < oo then
E(XY|F)=XE(Y|F).

Let F,, be a filtration, i.e., an increasing sequence of o-fields. A sequence
X, is said to be adapted to F, if X,, € F,, (i.e. X,, is F,,-measurable) for all
n. If X, is a sequence with

(i) E|X,| < oo,



(ii) X, is adapted to Fp,
(ili) E(Xp41]|Fn) = X, for all n,

then X is said to be a martingale (wrt F,,). If in this definition, = is replaced
by < or >, then X is said to be a supermartingale or submartingale, re-
spectively.

(Theorem 4.2.9) If N is a stopping time and X,, is a supermartingale,
then Xnyan is a supermartingle.

(Theorem 4.2.11 - Martingale convergence theorem) If X,, is a sub-
martingale with sup X, < oo then as n — oo, X,, converges a.s. to a limit X
with E|X| < oo.

(Theorem 4.2.12) If X, > 0 is a supermartingale then as n — oo, X,, = X
a.s. and FX < EXj.
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