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This material covers key theorems and concepts of Chapters 1.1-4.3 of Dur-
rett’s Probability: Theory and Examples, 5th edition.

1 Measure theory backgrounds

A probability space is a triple (Ω,F , P ), where Ω is a set of of ”outcomes”,
F is a set of ”events”, and P : F → [0, 1] is a function that assigns probabilities
to events. We assume that F is a σ-field (or σ-algebra), i.e. a (nonempty)
collection of subsets of Ω that satisfy

• if A ∈ F then Ac ∈ F , and

• if Ai ∈ F is a countable sequence of sets then ∪iAi ∈ F .

We also require that P is a measure, i.e. a nonnegative countably additive set
function F → R.

Let µ be a measure. Then µ is said to be σ-finite if there is a sequence of
sets An ∈ A such that µ(An) < ∞ and ∪nAn = Ω.

A function f : Ω → S is said to be a measurable map from (Ω,F) to
(S,S) if

X−1(B) ≡ {ω : X(ω) ∈ B} ∈ F for all B ∈ S.

If (S,S) = (Rd,Rd) and d > 1 then X is called a random vector. If d = 1, X
is called a random variable.

Note that if S is a σ-field, then {{X ∈ B} : B ∈ S} is a σ-field. It is the
smallest σ-field on Ω that makes X a measurable map. It is called the σ-field
generated by X and denoted by σ(X). So,

σ(X) = {{X ∈ B} : B ∈ S}.

Borel sets: the smallest σ-field containing the open sets.
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When the distribution F (x) = P (X ≤ x) has the form

F (x) =

∫ x

−∞
f(y)dy,

we say that X has density function f .

(Example 1.2.4 - Exponential distribution with rate λ) Density func-
tion: f(x) = λe−λx for x ≥ 0 and 0 otherwise. Distribution function:

F (x) =

{
0 x ≤ 0
1− e−λx x ≥ 0

(Example 1.2.5. Standard normal distribution) Density function:
f(x) = (2π)−1/2 exp (−x2/2). There is no closed form expression for the dis-
tribution function F (x), but for large x, we have useful bound for F (x) (check
Theorem 1.2.6.).

We say that X has a Poisson distribution with parameter λ if

P (X = k) =
e−λλk

k!

for k = 0, 1, 2, ....

(Binomal distribution) https://en.wikipedia.org/wiki/Binomial_distribution

(Theorem 1.3.1) If {w : X(w) ∈ A} ∈ F for all A ∈ A and A generates S,
then X is measurable.

(Theorem 1.3.4) If X : (Ω,F) → (S,S) and f : (S,S) → (T, T ) are
measurable maps, then f(X) is a measurable map from (Ω,F) to (T, T ).

It follows from Thm 1.3.4 that if X is a r.v. then so is cX for all c ∈ R,
X2, sin(X), etc.

(Notation) a ∧ b = min{a, b}; a ∨ b = max{a, b}; f+(x) = f(x) ∨ 0; f−(x) =
(−f(x)) ∨ 0.

In Chapter 1.4, integral is defined for measurable functions only!
We say f is integrable if

∫
|f |dµ < ∞. The integral of f is defined by∫

fdµ =

∫
f+dµ−

∫
f−dµ.

(This is already step 4 of the 4 steps in defining integral).

(Notation) We define the integral of f over the set E:∫
E

fdµ =

∫
f · 1Edµ
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(Theorem 1.5.3 - Bounded Convergence Theorem) Let E be a set
with µ(E) < ∞. Suppose fn vanishes on Ec, |fn(x)| ≤ M , and fn → f in
measure. Then ∫

fdµ = lim
n→∞

∫
fndµ.

(Theorem 1.5.5. Fatou’s Lemma): If fn ≥ 0 then

lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf
n→∞

fn
)
dµ.

(Theorem 1.5.7 - Monotone Convergence Theorem) If fn ≥ 0 and
fn ↑ f , then

∫
fndµ ↑

∫
fdµ.

(Theorem 1.5.8 - Dominated Convergence Theorem) If fn → f a.e.,
|fn| ≤ g for all n, and g is integrable, then

∫
fndµ →

∫
fdµ.

(Counting measure) https://en.wikipedia.org/wiki/Counting_measure.
When Ω is a countable set, F = all subsets of Ω, and µ is counting measure,
then we write

∑
i∈Ω f(i) for

∫
fdµ.

(Theorem 1.5.1 - Jensen’s inequality) Suppose φ is convex, that is,

λφ(x) + (1− λ)φ(y) ≥ φ
(
λx+ (1− λ)y

)
for all λ ∈ (0, 1) and x, y ∈ R. If µ is a probability measure, and f and φ(f) are
integrable, then

φ
( ∫

fdµ
)
≤

∫
φ(f)dµ.

Let ||f ||p = (
∫
|f |pdµ)1/p for 1 ≤ p < ∞.

(Theorem 1.5.2 - Holder’s inequality) If p, q ∈ (1,∞) with 1/p+1/q = 1
then ∫

|fg|dµ ≤ ||f ||p||g||q.

(Theorem 1.6.4 - Chebyshev’s inequality) Suppose φ : R → R has
φ ≥ 0, let A ∈ R and let iA = inf{φ(y) : y ∈ A}. Then

iAP (X ∈ A) ≤ E(φ(X);X ∈ A) ≤ Eφ(X).

(Theorem 1.6.7 - Dominated Convergence Theorem) If Xn → X a.s.,
|Xn| ≤ Y for all n, and EY < ∞, then EXn → EX.

(This is Theorem 1.5.8 rewritten for expectation).

(Theorem 1.6.9 - Change of variables formula) Let X be a random
element of (S,S) with distribution µ, i.e, µ(A) = P (X ∈ A). If f is a measurable
function from (S,S) to (R,R) so that f ≥ 0 or E|f(X)| < ∞, then

Ef(X) =

∫
S

f(y)µ(dy).
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(Theorem 1.7.2 - Fubini’s Theorem) If f ≥ 0 or
∫
|f |dµ < ∞ then∫

X

∫
Y

f(x, y)µ2(dy)µ1(dx) =

∫
X×Y

fdµ =

∫
Y

∫
X

f(x, y)µ1(dx)µ2(dy).

2 Law of Large Numbers

Two random variables X and Y are independent if for all C,D ∈ R,

P (X ∈ C, Y ∈ D) = P (X ∈ C)P (Y ∈ D)

i.e., the events A = {X ∈ C} and B = {Y ∈ D} are independent.

We say that Yn converges to Y in probability if for all ϵ > 0, P (|Yn−Y | >
ϵ) → 0 as n → ∞.

Let
Ω0 ≡ {w : lim

n→∞
Xn exists}.

If P (Ω0) = 1, we say that Xn converges almost surely.

https://en.wikipedia.org/wiki/Convergence_of_random_variables

(Convergence in Lp) Let p > 0 be fixed. Xn converges to X in Lp if
E|Xn −X|p → 0 as n → ∞.

A family of random variables Xi, i ∈ I with EX2
i < ∞ is said to be uncor-

related if we have
E(XiXj) = EXiEXj

whenever i ̸= j. (Note here that pairwise is enough. Also, note that being
independent implies being uncorrelated).

(Theorem 2.2.3 - L2 weak law) Let X1, X2, . . . be uncorrelated random
variables with EXi = µ and var(Xi) ≤ C < ∞. If Sn = X1 + · · ·+Xn then as
n → ∞, Sn/n → µ in L2 and in probability.

(Theorem 2.2.14 - Weak Law of Large Numbers) Let X1, X2, . . . be
i.i.d. with E|Xi| < ∞. Let Sn = X1 + · · · + Xn and let µ = EX1. Then
Sn/n → µ in probability.

(Note: there is a more general version (see Theorem 2.2.12), but this one is
more commonly seen. It’s more easy to remember, too).

(Lemma 2.2.13) If Y ≥ 0 and p > 0 then E(Y p) =
∫∞
0

pyp−1P (Y > y)dy.

(Build-up for Chapter 2.3) If An is a sequence of subsets of Ω, we let

lim supAn = lim
m→∞

∪∞
n=mAn = {ω that are in infinitely many An}
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(the limit exists since the sequence is decreasing in m).
It’s common to write lim supAn = {ω : ω ∈ An i.o.}, where i.o. stands

for infinitely often. An example which illustrates the use of this notation is
”Xn → 0 a.s. iff for all ϵ > 0, P (|Xn| > ϵ i.o.) = 0.”

(Theorem 2.3.1 - Borel-Cantelli lemma) If
∑∞

n=1 P (An) < ∞ then

P (An i.o.) = 0.

In other words, if the sum of the probabilities of the events {An} is finite, then
the probability that infinitely many of them occur is 0.

(Theorem 2.3.2) Xn → X in probability iff for every subsequence Xn(m)

there exists a further subsequence Xn(mk) that converges almost surely to X.

(Theorem 2.3.7 - The second Borel-Cantelli lemma) If the events An

are independent then
∑

P (An) = ∞ implies P (An i.o.) = 1.

(Theorem 2.4.1 - Strong law of large numbers) Let X1, X2, . . . be
pairwise independent identically distributed random variables with E|Xi| < ∞.
Let EXi = µ and Sn = X1 + · · ·+Xn. Then Sn/n → µ a.s. as n → ∞.

Note that the strong law holds whenever EXi exists. We have Theo-
rem 2.4.5: Let X1, X2, . . . be i.i.d. with EX+

i = ∞ and EX−
i < ∞. If

Sn = X1 + · · ·+Xn then Sn/n → ∞ a.s..

3 Central Limit Theorems

A sequence of distribution functions is said to converge weakly to a limit F
(written Fn ⇒ F ) if Fn(y) → F (y) for all y that are continuity points of F . A
sequence of random variables Xn is said to converge weakly or converge in
distribution to a limit X∞ (written Xn ⇒ X∞) if their distribution functions
Fn(x) = P (Xn ≤ x) converges weakly.

(Theorem 3.2.8) If Fn ⇒ F∞ then there are random variables Yn, 1 ≤
n ≤ ∞, with distribution Fn so that Yn → Y∞ a.s..

(Theorem 3.2.9) Xn ⇒ X∞ iff for every bounded continuous function g,
we have Eg(Xn) → Eg(X∞).

(Theorem 3.3.2) If X1 and X2 are independent and have ch.f.’s φ1 and φ2

then X1 +X2 has ch.f. φ1(t)φ2(t).

(Theorem 3.3.9) If F1, . . . , Fn have ch.f. φ1, . . . , φn and λi ≥ 0 have
λ1 + · · ·+ λn = 1 then

∑n
i=1 λiFi has ch.f.

∑n
i=1 λiφi.
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(Theorem 3.3.18) If
∫
|x|nµ(dx) < ∞ then its characteristic function φ

has a continuous derivative of order n given by φ(n)(t) =
∫
(ix)neitxµ(dx).

This implies if E|X|n < ∞, then its characteristic function is n times differ-
entiable at 0, and φ(n)(0) = E(iX)n.

(Theorem 3.4.1) Let X1, X2, . . . be i.i.d. with EXi = µ, var(Xi) = σ2 ∈
(0,∞). If Sn = X1 + · · ·+Xn then

(Sn − nµ)/σn1/2 → χ

where χ has the standard normal distribution.
(This is the central limit theorem for i.i.d sequences).

(Theorem 3.4.10 - The Lindeberg-Feller theorem) For each n, let
Xn,m, 1 ≤ m ≤ n, be independent random variables with EXn,m = 0. Suppose

(i)
∑n

m=1 EX2
n,m → σ2 > 0

(ii) For all ϵ > 0, limn→∞
∑n

m=1 E(|Xn,m|2; |Xn,m| > ϵ) = 0.

Then, Sn = Xn,1 + · · ·+Xn,n ⇒ σχ as n → ∞.
This is the CLT for triangular arrays, which generalizes the version for i.i.d..

In words, the theorem says that a sum of a large number of small independent
effects has approximately a normal distribution.

4 Martingales

Given a probability space (Ω,F0, P ), a σ-field F ⊂ F′, and a random variable
X ∈ F0 with E|X| < ∞. We define the conditional expectation of X given
F , E(X|F), to be any random variable Y that has

(i) Y ∈ F , i.e., Y is F-measurable.

(ii) for all A ∈ F ,
∫
A
XdP =

∫
A
Y dP .

Actually, Y exists and is unique.

(Theorem 4.1.12) If F ⊂ G and E(X|G) ∈ F then E(X|F) = E(X|G).

(Theorem 4.1.14) If X ∈ F and E|Y |, E|XY | < ∞ then

E(XY |F) = XE(Y |F).

Let Fn be a filtration, i.e., an increasing sequence of σ-fields. A sequence
Xn is said to be adapted to Fn if Xn ∈ Fn (i.e. Xn is Fn-measurable) for all
n. If Xn is a sequence with

(i) E|Xn| < ∞,
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(ii) Xn is adapted to Fn,

(iii) E(Xn+1|Fn) = Xn for all n,

then X is said to be a martingale (wrt Fn). If in this definition, = is replaced
by ≤ or ≥, then X is said to be a supermartingale or submartingale, re-
spectively.

(Theorem 4.2.9) If N is a stopping time and Xn is a supermartingale,
then XN∧n is a supermartingle.

(Theorem 4.2.11 - Martingale convergence theorem) If Xn is a sub-
martingale with supX+

n < ∞ then as n → ∞, Xn converges a.s. to a limit X
with E|X| < ∞.

(Theorem 4.2.12) IfXn ≥ 0 is a supermartingale then as n → ∞, Xn → X
a.s. and EX ≤ EX0.
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