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Question: How big should p be so that G(n,p) has certain
property with high probability (whp)?

e E.g. containing a triangle? p = w(1/n).
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e Monotone properties: containing a triangle (Fx,);
containing a perfect matching (Fperfect matching)

@ Non-monotone properties: containing an isolated vertex
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Figure: Graph of p,(F) with respective to p
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Figure: Illustration for threshold functions



Weverlel Threshold phenomena

Lincoln

Thresholds in
random
graphs and
the
Kahn-Kalai
Conjecture

Theorem (Bollobas-Thomason 1987). Every monotone
property has a threshold function; moreover one can take
pe(F) to be this threshold function.
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GOAL: find the asymptotic order of p.(F). Methods prior to
Kahn-Kalai Conjecture:

@ Lower bound: first-moment method

@ Upper bound: second-moment method, hitting-time result.
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Then e First-moment method: Let X be the random variable for
number of triangles in G(n,p).

n
EX = 3

EX n3p?
pp(Frez) = pp(X > 1) < T "6 o(1)
when p = o(1/n). So, p.(F) = Q(1/n).
Second-moment method: when p = w(1/n): EX is big. Use
Var(X) to assert that (X = 0) = o(1), and hence

o(Fica) = 1 — o(L). =

o(1/n).
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General setting:

@ Monotone property F C {0,1}V. oA
e E.g. for G(n,p): N = (g) O 05
e A cover G for F: G C {0,1}V
such that VI e FA5€G:SCT.
e E.g. for Fg,, G can be
{graphs with a triangle and no other edges}.
e L(F): be the maximum size of a
minimal element of F.
o E.g. for F,, L(Fk,) =3.
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F is p-small then:
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so p < pe(F).

The expectation threshold of F is defined as

pe(F) := max(F is p-small)
2

Key: pg(F) < pe(F).
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Theorem (Park-Pham 2022). There exists an absolute
constant K so that for every monotone F,

pe(F) < K - pp(F) - log L(F).
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Theorem (Frankston, Kahn, Narayanan, and Park, 2019).
There is an absolute constant K so that the following is true.
Let F be a monotone property that supports a p-spread
probability measure v. Then

pe(F) < K -p-log L(F)
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Thanh Le Upper bound: Park-Pham: define v that is uniform on all
perfect matchings on n vertices (and O elsewhere). For
S e {0, 1}V:

o If S'is not a matching: then > 754 v(T) = 0.
e If S is a matching: then

1
> u(T) = pm(Kn,gk)m

TDOS
 (n—2k)!  2"2(n/2)!
Coon/27k(n/2 — k) n! n
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Then, v is £-spread — pe(F) = O(logn)_
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Theorem) Lower bound: First-moment for p,,(having isolated vertex), we
get that p.(F) = Q(1%5%). =

n
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Comments:

@ People used non-uniform v for harder problems, e.g. Latin
squares, containment of a square of Hamilton cycle.
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Thank you!!
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